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ABSTRACT 

A custom Wi-Fi and Bluetooth contact tracing system is created to find detailed paths of infected individuals without 
any user intervention. The system tracks smartphones, but it does not require smartphone applications, connecting to 
the routers, or any other extraneous devices on the users. A custom Turtlebot3 is used for site surveying, where it 
simulates mobile device movement and packet transmission. Transmit power, receive power, and round trip time are 
collected by a custom ESP32C3 router. MAC randomization is defeated to identify unique smartphones. Subsequently, 
the wireless parameters above are converted to signal path loss and time of flight. Bidirectional long short term 
memory takes the wireless parameters and predicts the detailed paths of the users within 1 m. Public health authorities 
can use the contact tracing website to find the detailed paths of the suspected cases using the smartphone models and 
initial positions of confirm cases. The system can also track indirect contact transmissions originating from surfaces and 
droplets due to having absolute positions of users. 

 
Keywords Received signal strength indicator (RSSI), Round trip time (RTT), Fine time measurement (FTM), Wi-Fi 
indoor localization, Bluetooth indoor localization 

 

1 Introduction 
 

When a new outbreak appears with unknown pathogens, vaccines and treatments are not available immediately to 
reduce the spread of the disease. Therefore, governments and public health agencies use extensive disease testing to 
identify infected individuals. However, testing the entire population is inefficient because of the limited testing capacity, 
false negative cases, and the associated costs. Contact tracing has been developed to make efficient use of the limited 
testing resources, where the closest contacts of the confirmed cases or symptomatic cases are tested and isolated. 

 
1.1 Contact Tracing 

Contact tracing is difficult because super-spreaders could infect thousands of people a day [1] and exponentially increase 
the number of people in the contact tracing list. Traditionally, contact tracing has been done by hand, where the 
authorities interview each confirmed case to get the contacts and visited places. Afterwards, suspected cases are isolated 
and tested. Symptomatic cases and high exposure cases get a higher priority in testing. With a high enough contact 
tracing efficiency, diseases can be locally contained and sometimes be eradicated [2]. However, performing contact 
tracing manually is very inefficient because the infected people might forget who they met and where they visited. Staff 
shortages, incorrect training, and slow turnaround times can also cause inefficient contact tracing. 
 
Many countries have moved to automated means of contact tracing [3–5] via smartphones, cameras, custom tracking 
devices, or genome sequencing. Cameras can be used in-conjunction with facial recognition software to track individual 
people. Researchers collected a database of faces and applied a convolutional neural network (CNN) to classify the 
presences of the people in the database [6]. They are able to perform contact tracing via a web interface. Instead of only 
classifying faces, other researchers have used multiple cameras to track movements in real time [7]. Furthermore, they 
can determine the actual paths of the confirmed cases for contact tracing. 

Genome sequencing enables contact tracing without interviewing patients or requiring tracking devices. This particularly 
useful for incapacitated or unidentified patients. J. Gardy et al. [8] applied hierarchical clustering to sequenced genomes 
in order to create a genome tree of a tuberculosis outbreak. Moreover, the genome tree perfectly matches the contact 
traced social network created from patient questionnaires. The main disadvantage of genome sequencing is the genome 
tree can only be created after the patients are infected. 

On the other hand, smartphones are readily available and can be used for tracking the movements of individuals. Thus, 
many governments, public health agencies, and software companies have implemented smartphone applications for 
contact tracing. The Singaporean government released one of the first contact tracing applications for COVID-19 [9]. It 
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uses Bluetooth Low Energy (BLE) to exchange temporary IDs between two smartphones within a certain range. If 
there is a confirmed case based on the temporary IDs received, then the application warns the user about a COVID-19 
exposure. Other researchers have used similar approaches for contact tracing [10–14]. Alternatively, T. Yasaka et 
al. [15] used QR codes for tracking social gatherings between groups of people. The host of the social gathering creates 
a QR code using the application, and the participants scan the QR code to build a time series graph. When a user 
indicates a positive test result, all users within 3 traversals of the time series graph are notified. A few more research 
papers have used the QR code approach [16–18]. Moreover, the smartphones’ GPS can be used to track users in the 
outdoor environments [19]. This would provide a higher position accuracy than BLE and QR codes. 

Wi-Fi can be a useful tool for localization and contact tracing. A. Trivedi et al. [20] developed a Wi-Fi based contact 
tracing system without the need to install an application onto the smartphone. They used the access points (APs) of two 
universities to collect packets from smartphones, where the user’s trajectory is built using the closest APs. Furthermore, 
a graph search algorithm takes the user’s trajectory and produces a location and proximity report of the exposed users. 
Other research groups have used Wi-Fi based smartphone applications [21] to capture beacon frames from nearby APs 
and upload the data to the cloud. This allows the authorities to track the visited places and the positions of the confirmed 
cases. Moreover, the lifespan of the disease can be known due to the recorded timestamps of the beacon frames. 

 
1.2 Indoor localization 

Localization is fundamental to contact tracing, and it has two major categories: outdoor and indoor localization. Out of 
all the outdoor localization methods, Global Positioning System (GPS) is the most popular and is robust against signal 
interference and jamming [22]. However, GPS requires direct line-of-sight (LoS) between the satellites and the handset, 
which is unsuitable for indoor localization. 

Indoor localization has drawn more attention in the industry for its wide variety of use cases, such as autonomous 
indoor vehicles (AIVs) [23], unmanned aerial vehicles (UAVs) [24], home automation, and smart buildings [25]. Radio 
Frequency (RF) waves penetrate materials like tables and walls, making RF-based indoor localization the most adopted 
solution. Moreover, RF performs better than other methods [26]. RF-based systems employ mobile phones for capturing 
wireless parameters such as angle of arrival (AOA), time of arrival (TOA), and received signal strength indication 
(RSSI). These parameters act as fingerprints for positioning. With the help of machine learning, the average localization 
error is around 1 m [27, 28]. 

Our interests lie in estimating the positions of people to determine COVID-19 exposures. As a result, indoor localization 
is more useful than outdoor localization due to indoor environments having a higher infection rate [29]. Moreover, 
indoor localization is extremely helpful for tracking COVID-19 outbreaks in complex environments such as supermarkets 
and airports. 

 
1.3 Privacy and MAC Address Randomization 

Privacy is a very important aspect to keeping collected information safe and within regulations with Canadian and 
British Columbia Privacy Acts. In this system, phone numbers, email addresses, and names are not collected by 
the routers and are not stored in the database. Only the MAC addresses of the Wi-Fi chipsets are obtained as the 
identification of the smartphones. Moreover, users that enter a building with the contact tracing system in place need to 
be aware of what the system does and actively consent to their data being collected. Users must also have the ability to 
request the data collected from their phone MAC address to be erased by overwriting the data with random bits. The 
collected data such as MAC addresses, smartphone model specific information, and phone positions are encrypted with 
AES256. Note that MAC addresses can not directly identify users due to MAC address randomization. 

 
1.4 Features and Differences of the Proposed Contact Tracing System 

Previous Wi-Fi and BLE contact tracing systems require significant user intervention to succeed. Some contact tracing 
systems require the users to manually install smartphone applications [9–14], of which results in a low uptake and an 
ineffective system. Commercial off-the-shelf (COTS) routers and COTS contact tracing software [20] require users 
to manually join wireless networks. However, smartphones often disconnect from wireless networks when they go 
to sleep. As a result, this creates large position gaps in COTS contact tracing software. Other research groups have 
developed custom user equipment that periodically transmit beacons to mitigate the problem. However, this method 
is costly because every user needs to buy a device. The contact tracing systems listed above can only determine the 
relative distances between two devices, while the absolute positions of the users are unknown. This poses a problem 
because the public health authorities require absolute positions to track diseases that can survive on surfaces and in 
ventilation systems for many days. 

Unlike the manual and relative positioning systems above, we propose a Wi-Fi and BLE contact tracing system for 
finding the absolute paths of the infected individuals without any user intervention. The proposed system does not 
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require the users to install smartphone applications or to join wireless networks. Custom user equipment is not needed 
as the system captures Wi-Fi and BLE packets from smartphones, smartwatches, tablets, laptops, and BLE headphones. 
We transmit RTS packets to the devices to make them respond at a higher rate, even if their screens might be off. 
Moreover, the localization algorithms are able to determine the absolute positions and exact timings of the users. As a 
result, we can use disease half lives to track indirect contact transmissions originating from surfaces and droplets. 

The paper is organized as follows. Section 2 describes the components of the proposed contact tracing system. The 
collection process of the wireless parameters and the overall database are explained in Section 3. Section 4 shows 
the results and discussions of identifying unique mobile devices, localization performance, and contact tracing. A 
conclusion is presented in Section 5. 

 

2 Proposed Contact Tracing System 

Fig. 1 shows the contact tracing system diagram. The system has 5 main components: Turtlebot3 [30], ESP32C3 
routers, packet processing, localization algorithms, and contact tracing algorithms. Firstly, the Turtlebot3 [30] executes 
autonomous site surveys by visiting all positions within the indoor environments. A smartphone is mounted on the robot, 
and it broadcasts wireless packets while moving in order to simulate mobile device trajectories. Secondly, the ESP32C3 
routers transmit RTS packets and BLE pings to increase the response rates of the mobile devices. Simultaneously, the 
routers capture and store all Wi-Fi and BLE packets onto internal SD cards. At the end of the day, the routers move 
the data to the master server for packet processing. Thirdly, the master server extracts transmit power (TX power), 
received signal strength indication (RSSI), and fine time measurement (FTM) from the packets. Time of flight (ToF) is 
computed from FTM, while signal path loss is derived from TX power and RSSI. Fourthly, bidirectional long short 
term memory (BiLSTM) neural networks are used for predicting the trajectories of mobile devices. One BiLSTM is 
trained using a time series of ToF, while the other is trained using a time series of signal path loss. Finally, we build a 
contact tracing graph using the contact tracing algorithms. Every user is assigned to a node on the contact tracing graph. 
For every trajectory intersection between the trajectory of a confirmed case and the trajectory of a user, we add an edge 
that connects the node of the confirmed case to the node of the user. After repeating the process above, a graph of the 
suspected cases is generated. 

 
2.1 Turtlebot3 for Site Survey 

Typically, mobile devices transmit many Wi-Fi and BLE packets as they move around the building. By implementing 
packet sniffing on the router side, mobile devices can be tracked throughout the day. However, the localization 
algorithms require large amounts of training and testing data. Measurement of the training data is done in the form of a 
site survey, where a mobile device is placed at every position and the packet information is captured at the router side. 

Collecting data by hand is extremely tedious and introduces position errors. Instead, we built a custom Turtlebot3 [30] 
to autonomously collect data for the site survey. The original Turtlebot3 has a height of 19 cm, which is too short for 
the height of a smartphone on a table or in a user’s pocket. A platform is added to the custom Turtlebot3 in order to 
increase the smartphone’s height to 75 cm. Moreover, the custom Turtlebot3 is also equipped with RPLIDAR A2, Intel 
D415 RGBD camera, Nvidia Jetson TX2, and Raspberry Pi 3. 
 
Robot Operating System 2 (ROS2) [31] is an open-source robotics framework that collects sensor information, executes 
data processing, implements inter-process communications, and allows real-time control. ROS2 has four main concepts: 
nodes, topics, services, and actions. Nodes are individual processes, of which execute a singular task like collecting 
sensor data or filtering information. Nodes can commence one way communications with other nodes by publishing 
messages to topics. All nodes that subscribe to a specific topic receive the same messages. Unlike topics, services are a 
two-way communications channel. Nodes can send service requests and receive service responses once the specific 
operation is completed. Actions are an extension of services, where the nodes receive periodic feedback status messages 
instead of not receiving feedback messages. 

 
The RPLIDAR A2 is a 2D laser ranging device that measures the distances to the nearest opaque objects. It is a 360° 
LIDAR that completes 1 revolution every 0.1 seconds. The 360° scans are divided into 360 angle intervals. For each 
angle interval, the RPLIDAR A2 returns a distance value. The laser scans feed into ROS2 SLAM_toolbox, of which 
it produces a 2D grid map and publishes the transform from map to odometry (odom). It essentially determines the 
position and orientation of the Turtlebot3. On the other hand, the Intel D415 RGBD is used for obstacle avoidance. The 
D415 produces a RGBD point cloud at 720p 30 frames per second (FPS). Camera sensors have false positive readings, 
where the sensor outputs a ghost point in the absence of objects. In order to eliminate the false positives, multiple 
RGBD point cloud frames are joined together and are uniformly decimated. Afterwards, the point cloud is organized 
into clusters, where the cluster centres and standard deviations are calculated. If a point is 1 standard deviation away 
from the cluster centre, then it is removed. 
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Algorithm 1: Robot Path Planing and Navigation 
 

Input  :LIDAR laser scans and camera point clouds 
Output :Moves the robot to sampling positions along the planned path 
VisitedPositionList ← []; 
while True do 

Odom ← getOdom(); 
LaserScans ← getLIDAR(); 
PointCloud ← getCamera(); 
Costmap ← newCostmap(Costmap,LaserScans); 
Costmap ← newCostmap(Costmap,PointCloud); 
Rays ← Costmap - Odom; 
StartPositionList ← []; 
for each Ray in Rays do 

Check ← checkObstacles(Costmap,Ray); 
if Check.hasObstacles() == False then 

Position ← selectRandomPosition(Ray); 
StartPositionList.append(Position); 

end if 
end for 
BestPath ← initPath(); 
BestPathScore ← 0; 
for each StartPos in StartPositionList do 

for each EndPos in Costmap do 
Path ← createPath(StartPos,EndPos); 
Check ← checkObstacles(Costmap,Path); 
if Check.hasObstacles() then 

continue; 
end if 
PathScore ← computeScore(Path,VisitedPositionList); 
if PathScore > BestPathScore then 

BestPathScore ← PathScore; 
BestPath ← Path; 

end if 
end for 

end for 
for each Position in BestPath do 

Check ← checkObstacles(Costmap,Position); 
if Check.hasObstacles() then 

moveRobotToPosition(Odom); 
break; 

end if 
moveRobotToPosition(Position); 
sleep(); 
VisitedPositionList.append(Position); 

end for 
end while 
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Algorithm 2: Pseudocode of Contact History Generation Algorithm 
 

Input : TargetTraceList, OtherTraceList 
Output : ContactHistoryList 
Function GenerateContactHistory();  
Initialize Hash map of time for pair matching; 
Initialize Hash map of distance for pair matching; 
Initialize ContactHistoryList; 
Max_Distance ← 15; 
Time_Resolution ← 30; 
for each TargetTrace in TargetTraceList do 

Find the DistanceMap list where firstCell = TargetTraces.cell and distance < Max_Distance; 
startTime ← TargetTrace.time + 0.5Time_Resolution; 
endTime ← TargetTrace.time - 0.5Time_Resolution; 
for each OtherTrace in OtherTraceList do 

if startTime < OtherTrace < endTime and TargetTrace.siteId = OtherTrace.siteId and the distance between 
TargetTrace.cell and OtherTraces.cell appears in the DistanceMap List then 

add TargetTrace.time and distance to HashMap with key = TargetTrace.macAddress + 
OtherTrace.macAddress + TargetTrace.siteId; 

end if 
end for 
for each Key and value in HashMap do 

Initialize new ContactHistory; 
firstMacAddress ← key.Target TraceMacAddress; 
secondMacAddress ← key.Other TraceMacAddress; 
siteId ← key.siteId; 
contactDuration ← size of value; 
lastContactTime ← last element in value of time HashMap; 
Assign each element in value of distance HashMap to corresponding distance_Range; 
Calculate contact_Distance_Avg and contact_Distance_Min using distance HashMap value; 
Add ContactHistory to ContactHistoryList; 

end for 
end for 
return ContactHistoryList 

 
 

3 Database 

Multiple datasets were collected at the University of Victoria, Victoria, British Columbia, Canada in the Engineering 
Office Wing (EOW) 3rd floor, EOW 4th floor, Engineering Computer Science (ECS) 1st floor, and ECS 5th floor. At 
each floor, the Turtlebot3 physically moves along 3 unique trajectories. Every trajectory contains unique positions that 
the other trajectories do not have. One of the trajectories is randomly selected for the training dataset, while another is 
selected for the testing dataset. The remaining trajectory is appended to the cross-validation dataset. Furthermore, we 
artificially generated more training trajectories using the data points from the training dataset as described in Section 2 
Subsection D. However, we did not create artificial trajectories using the testing and cross-validation datasets. The 
quality of the data collected by the ESP32C3 routers is unknown, thus we used COTS routers as a reference to validate 
the quality of the data from the ESP32C3 routers. The data collected are organized into two main groups: Dataset A is 
collected using the COTS routers and Dataset B is collected using the ESP32C3 routers. 
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Dataset A contains the packets collected by COTS routers. At every position, at least 50 samples are obtained by the 
routers. Each sample contains a timestamp, X position, Y position, θ orientation, Wi-Fi RSSI, Wi-Fi SQI, BLE RSSI, 
and BLE TX power. For the EOW 3rd floor, 11 Wi-Fi routers and 7 BLE routers are deployed to obtain the dataset. 
Note that some Wi-Fi routers share the same locations as the BLE routers. The raw dataset contains approximately 
500,000 samples at 1,000 different positions, where each sample has 31 wireless parameter features. For the EOW 4th 
floor, 9 Wi-Fi routers and 7 BLE routers are deployed to obtain the dataset. There are fewer routers on this floor due to 
the lack of power outlets. The raw dataset contains approximately 300,000 samples at 600 different positions, where 
each sample has 29 wireless parameter features. For the ECS 1st floor, 7 Wi-Fi routers and 7 BLE routers are deployed 
to obtain the dataset. The raw dataset contains approximately 200,000 samples at 1000 different positions, where each 
sample has 24 wireless parameter features. For the ECS 5th floor, 8 Wi-Fi routers and 6 BLE routers are deployed to 
obtain the dataset. The raw dataset contains approximately 300,000 samples at 600 different positions, where each 
sample has 24 wireless parameter features extracted from the packets. 

Dataset B is sampled at the same locations and with the same procedures as Dataset A. However, Dataset B uses 
ESP32C3 routers, and it provides a new wireless feature known as Wi-Fi FTM. Moreover, the ESP32C3 routers occupy 
40 MHz bandwidth instead of the 20 MHz bandwidth in Dataset A. These new additions increase the localization 
accuracy of the BiLSTM and the precision of the contact tracing algorithm. 

 

4 Results and Discussion 

4.1 Identifying Unique Mobile Devices from Random MAC Addresses 

 
Table 1: Test Results of the Clustering Algorithm for Identifying Unique Mobile Devices from Random MAC 
Addresses. 

 

Bucket Device MAC Addresses 
0 Galaxy S4 D0:22:BE:F5:7C:B4 
1 HTC One X E8:99:C4:99:57:24 
2 Galaxy S6 4E:0F:A0:57:F8:75, 26:45:19:1E:D5:FE, 1A:5B:0A:B1:7D:4A, 0E:BF:6D:4D:ED:A7, 

42:B2:3B:14:49:F9, 1A:CF:16:13:A2:CB, 
8C:F5:A3:3D:16:DA, 3A:DC:D3:0A:46:B6 

3 Galaxy A11 6A:E0:23:0C:20:0F, 56:5C:AC:D6:13:30, E2:01:19:D0:64:2D, FA:05:BB:EA:47:2D, 
A0:27:B6:EE:6A:A7, 7E:69:90:C6:C4:04, 
DA:00:FD:35:82:25, 56:2F:2B:64:BC:C5, F6:08:C4:AF:61:94, 16:0D:FA:80:F8:1F, 
5E:99:98:7B:5A:BF, 96:96:27:97:22:4C, 
FE:CB:1A:2E:F5:9A, B2:78:9D:5C:B9:1A 16:3C:FC:DF:1C:CA, 96:38:7C:5D:20:5C 

4 iPhone SE 82:31:01:8A:F3:AD, AE:9E:BE:7A:F3:D3, A6:E9:93:A7:9D:3E, 
D2:C5:A7:8B:9E:2C, 46:33:10:CE:43:3B, AA:CB:57:97:5E:5F, 
1A:40:6D:01:B4:05, 96:C2:5B:09:D8:4E, 3A:E6:E3:9B:8E:6D, 56:D3:41:61:0B:0A, 
A2:68:13:44:B2:EF, 8E:6A:CF:EF:6E:1F, 
56:A2:4A:EE:D4:46, E2:F7:83:DC:1E:E4, 22:29:5A:0D:F3:24, B6:33:3F:4F:89:1A, 
9E:3D:78:F4:38:5D, ... 

5 iPhone X 86:98:6E:73:89:1D, 86:AD:C7:47:02:39, 3E:6F:2D:B3:4D:BB, 76:8A:CB:74:73:90, 
9A:2D:E5:A8:F1:5A, 76:34:D2:C0:89:71, 
FE:B8:15:02:43:7C, 76:55:81:98:C3:78, CE:56:BC:E7:3E:72, 46:C9:78:16:41:B6, 
BE:F2:DB:37:1A:8A, 2A:2F:3E:B1:C7:A0, 
6E:4C:1E:F1:8E:E8, A2:97:F2:BA:2A:D5, 6A:DD:55:59:2E:68, DA:D2:D1:55:18:60, 
F2:C5:62:AD:29:04, ... 

6 PinePhone 7A:26:59:B4:C6:6D, D6:8A:05:6A:62:F5, 96:61:D9:88:25:45, 7E:53:9C:5F:BE:D0, 
B6:13:70:3F:28:C9, 0A:70:BB:F2:2D:9D, 
52:A2:3B:BD:6D:DF, D6:DB:E0:37:8C:CE, 62:0B:F8:3C:3A:E2, BA:12:FB:78:53:F4, 
A2:3E:F7:DF:14:03, BE:B6:47:61:BC:31, 
EA:14:84:75:F9:00, 8E:B7:F1:4D:1A:FC, C6:41:5C:E2:C6:7B, 92:47:59:89:C4:37, 
CA:DC:C0:CF:39:FB, ... 

 
In this section, the effectiveness of the clustering algorithm for identifying unique mobile devices from random MAC 
addresses is tested. For the test setup, MAC address randomization is enabled on the devices, and they are forced to join 
a wireless network. Every time a mobile device joins a new wireless network, the operating system generates a new 
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random MAC address for that specific network. Ground truth MAC addresses are obtained by looking at the settings 
menu. Simultaneously, the devices’ probe request packets are captured at the router side. Afterwards, the clustering 
algorithm is applied to the probe requests to identify unique mobile devices from random MAC addresses. 

Table 1 shows the results of the clustering algorithm on the testing dataset. Each row of the table contains a single 
bucket, of which each bucket contains MAC addresses that belong to the same mobile device. Galaxy S4 is loaded 
with LineageOS 16, of which does not have MAC address randomization. Table 1 shows the clustering algorithm 
assigning Galaxy S4’s single MAC address to a single bucket and MAC addresses from other devices are not present in 
that bucket. The result matches the Galaxy S4’s ground truth MAC address. Similar to the Galaxy S4, the HTC One 
X does not have MAC randomization, and it results in a single MAC address found in Table 1. However, Galaxy S6 
is loaded with LineageOS 18.1, and it generates a new random MAC address upon joining a new wireless network. 
Galaxy S6 is forced to join 7 different wireless networks, and the clustering algorithm places all 7 of the Galaxy S6’s 
random MAC addresses in the same bucket. Note that the clustering algorithm has 100% accuracy because all the MAC 
addresses in Galaxy S6’s bucket in Table 1 matches all the MAC addresses in the ground truth. On the other hand, 
Android 11 on Galaxy A11 adds a new feature that randomizes MAC addresses while scanning for nearby SSIDs. The 
exact same test is performed on the Galaxy A11, of which the ground truth MAC addresses matches the clustering 
result found in Table 1. Note that the extra MAC addresses of Galaxy A11 are generated when scanning for SSIDs. We 
have also observed that Android only generates a new random MAC address on the first network connection. Rejoining 
a previously connected network yields the same MAC address. 

The iPhone SE supports MAC address randomization because it has iOS 15.1 firmware. For the test, iPhone SE is 
forced to join 7 different wireless networks, and the clustering algorithm places all 7 of the iPhone SE’s random MAC 
addresses in the same bucket. Again, the clustering algorithm achieves 100% accuracy because all the ground truth 
MAC addresses are found at the iPhone SE’s bucket in Table 1. The extra MAC addresses found in the iPhone SE’s 
bucket are generated when scanning for nearby SSIDs. The iPhone X’s results are the same as the iPhone SE’s results 
because they both have the same iOS 15.1 firmware. 

The full Arch Linux distribution is installed onto the PinePhone, of which allows full control over MAC address 
randomization. We wrote a script to generate 25 new random MAC addresses and to save them into a file as the ground 
truth. Afterwards, the clustering algorithm’s results found in Table 1 are compared to the ground truth. The clustering 
algorithm is able to place all the PinePhone’s MAC addresses into the same bucket without any other MAC addresses 
from other devices being there. Overall, the clustering algorithm correctly classified every single test device into their 
respective buckets, even though their MAC addresses are randomized. However, any two mobile devices that have the 
same model number at the same spacetime might cause the system to produce incorrect results. This is due to identical 
devices producing indistinguishable probe request information and RSSI information. 

 
4.2 Localization Algorithm Performance on Dataset A 

 
Table 2: Dataset A: BiLSTM’s localization performance at different locations. 

 
Location Method APs RMSE (m) MAE (m) Training Time (s) Testing Time (µs) 
EOW 3rd Floor BiLSTM+Wi-Fi 11 0.83 0.58 3.67 420 
EOW 3rd Floor BiLSTM+BLE 7 0.88 0.56 3.12 399 
EOW 3rd Floor BiLSTM+Wi-Fi+BLE 18 0.82 0.58 4.34 445 

EOW 4th Floor BiLSTM+Wi-Fi 9 0.92 0.61 3.55 410 
EOW 4th Floor BiLSTM+BLE 7 0.93 0.63 3.02 402 
EOW 4th Floor BiLSTM+Wi-Fi+BLE 16 0.84 0.60 3.96 405 

ECS 1st Floor BiLSTM+Wi-Fi 7 1.69 1.42 4.72 340 
ECS 1st Floor BiLSTM+BLE 7 2.13 1.73 3.31 361 
ECS 1st Floor BiLSTM+Wi-Fi+BLE 14 1.30 1.03 4.32 417 

ECS 5th Floor BiLSTM+Wi-Fi 8 0.83 0.62 3.72 370 
ECS 5th Floor BiLSTM+BLE 6 0.87 0.68 3.38 373 
ECS 5th Floor BiLSTM+Wi-Fi+BLE 14 0.92 0.63 4.13 391 

Note: Wi-Fi implies Wi-Fi RSSI and SQI,while BLE implies BLE RX power and TX power. 

The BiLSTM neural networks are applied to many environments, and their RMSE and MAE performances are shown in 
Table 2. At EOW 3rd floor, the BiLSTM with Wi-Fi has a RMSE of 0.83 m and a MAE of 0.58 m. Moreover, only using 
BLE information yields a similar RMSE of 0.88 m and a MAE of 0.56 m because the Wi-Fi routers share the same 
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Figure 3: BiLSTM’s predicted locations vs ground truth at EOW 3rd floor (Dataset A: Wi-Fi+BLE). 
 

 
Table 3: Dataset B: BiLSTM’s localization performance at different locations. 

 
Location Method AP

s 
RMSE 
(m) 

MAE 
(m) 

Training 
Time (s) 

Testing 
Time (µs) 

EOW 3rd 
Floor 

BiLSTM+Wi-Fi FTM 8 0.80 0.57 4.59 360 

EOW 3rd 
Floor 

BiLSTM+Wi-Fi RSSI 8 0.82 0.62 5.57 366 

EOW 3rd 
Floor 

BiLSTM+Wi-Fi 
FTM+Wi-Fi RSSI 

16 0.75 0.55 5.93 442 

EOW 5th 
Floor 

BiLSTM+Wi-Fi FTM 8 0.75 0.57 4.21 461 

EOW 5th 
Floor 

BiLSTM+Wi-Fi RSSI 8 0.77 0.59 3.70 428 

EOW 5th 
Floor 

BiLSTM+Wi-Fi 
FTM+Wi-Fi RSSI 

16 0.70 0.52 3.52 373 

ECS 1st 
Floor 

BiLSTM+Wi-Fi FTM 8 1.52 1.31 11.63 426 

ECS 1st 
Floor 

BiLSTM+Wi-Fi RSSI 8 1.63 1.41 11.89 409 

ECS 1st 
Floor 

BiLSTM+Wi-Fi 
FTM+Wi-Fi RSSI 

16 0.89 0.70 12.07 446 

Note: Wi-Fi RSSI implies Wi-Fi RSSI and SQI, while Wi-Fi FTM implies RTT using IEEE 802.11mc . 
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positions as the BLE routers. Combining Wi-Fi and BLE information together results in a RMSE of 0.82 m and a MAE 
of 0.58 m, of which has no discernible difference. For error analysis, the ground truth trajectory is compared against the 
BiLSTM’s predicted trajectory in Fig. 3, while the error heat map is displayed in Fig. 4. The path begins at (X = 0 m, 
Y = 0 m) with medium error of 1.0 m. However, the error increases to 1.5 m at the corners because that position has 
the least amount of LoS from the routers. Subsequently, the highest error of 2.5 m occurs in the east hallway because 
there are multiple objects blocking the signal paths of the routers. Afterwards, the error rapidly drops to 0.5 m as the 
BiLSTM recovers itself and gets back on the correct trajectory. For the rest of the path, the error predominantly stays 
below 1.0 m, but there are a few locations where the error jumps above 1.0 m due to corners. 

 
2.5 

 

 
15 

2 
 

 
10 

1.5 
 
 

 

5 
1
 

 
 

 
0 

0.5 

 
 

 
-5 0 

-10 -5 0 5 10 

X (m) 

Figure 4: Error heat map of the BiLSTM’s predicted locations at EOW 3rd floor (Dataset A: Wi-Fi+BLE). 
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Figure 5: BiLSTM’s predicted locations vs ground truth at EOW 4th floor (Dataset A: Wi-Fi+BLE). 
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Figure 6: Error heat map of the BiLSTM’s predicted locations at EOW 4th floor (Dataset A: Wi-Fi+BLE). 
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Figure 7: BiLSTM’s predicted locations vs ground truth at ECS 1st floor (Dataset A: Wi-Fi+BLE). 

 
At EOW 4th floor, the BiLSTM with Wi-Fi has a RMSE of 0.92 m and a MAE of 0.61 m. The RMSE of EOW 4th floor 
is slightly higher than the RMSE of EOW 3rd floor because the routers’ signal paths in EOW 4th floor are blocked by 
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Figure 8: Error heat map of the BiLSTM’s predicted locations at ECS 1st floor (Dataset A: Wi-Fi+BLE). 
 

more walls and doors. Moreover, the number of routers is reduced from 11 to 9 due to the lack of power outlets. Using 
only BLE produces a similar RMSE of 0.93 m and a MAE of 0.63 m due to the number of Wi-Fi and BLE routers 
being similar. Combining Wi-Fi and BLE information together results in a slightly lower RMSE of 0.84 m and a MAE 
of 0.60 m. The lower RMSE and MAE is caused by the increased bandwidth and the increased channel diversity. Just 
as before, the ground truth trajectory is compared to the BiLSTM’s predicted trajectory in Fig. 5, while the error heat 
map is shown in Fig. 6. This time, the highest error of 2.3 m occurs at the starting position of (X = 0 m, Y = 0 m). The 
large error is caused by not having enough space and power outlets to place more routers at the starting position. Soon 
after, the error quickly decreases to 1.0 m as the BiLSTM recovers and gets back on the correct trajectory. There are a 
few instances where the error jumps significantly due to the objects blocking the router’s signals, but those errors are 
lower than the starting position errors. 

ECS 1st floor is very different from the other floors because the packets are collected in an open area instead of an 
enclosed hallway. In an open area, Wi-Fi RSSI and BLE RSSI changes approximately 5 dBm per 10.0 m. The routers 
are not sensitive enough to detect the small changes in RSSI and creates errors in localization. Moreover, there is an 
extra degree of freedom compared to the hallways, of which creates more ambiguity in the trajectory. As a result, 
localization errors on this floor are much larger than the other floors. For Wi-Fi, the RMSE is 1.69 m and the MAE 
is 1.42 m, of which the localization errors are significantly higher than EOW 3rd floor, EOW 4th floor, and ECS 5th 
floor. Localization using BLE information has a larger RMSE of 2.13 m and a larger MAE of 1.73 m. This is caused by 
the BLE having a lower transmit power and worse antennas. Combining Wi-Fi and BLE slightly lowers the RMSE 
to 1.30 m and the MAE to 1.03 m because the antenna diversity and the channel diversity are increased. The ground 
truth trajectory is compared to the BiLSTM’s predicted trajectory in Fig. 7, while the error heat map is shown in Fig. 8. 
The trajectory starts off well at the origin of (X = 0 m, Y = 0 m) with an error of 0.5 m. However, the error rapidly 
increases to above 2.0 m because the predicted trajectory quickly diverges from the ground truth. The BiLSTM never 
recovers from incorrect predictions, and the error remains above 2.0 m. The large errors are caused by the ambiguity of 
the wireless features. Multiple unique positions on the map have the same Wi-Fi RSSI, SQI, and BLE RSSI. 

 
4.3 Web Application 

We created a website for finding the suspected cases, given the confirmed cases. Moreover, the website displays the 
trajectories of the suspected cases and their MAC addresses/smartphone model specific information. Fig. 16 shows a 
page where the health authorities can enter the MAC address/smartphone model specific information of the confirmed 
case. The search result in Fig. 17 displays the contact history of a confirmed case, showing all the suspected cases 

 

 

Figure 17: Contact history search result. 
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Figure 18: Path of a confirmed case and suspected case. 

 
with time and distance information. Each row of the contact history table is a contact instance, and each column is the 
information for each contact instance. To show the path of the confirmed case, the authorities specify the time range 
between two dates in Fig. 17. The blue dots in Fig. 18 shows the path of a confirmed case for a location. Each blue dot 
represents a sample instance. The button beside each suspected case allows the user to display the path of the suspected 
case, shown with the red dot in Fig. 18. A higher density of dots means the person spends more time on that spot. 

 

5 Conclusion 

We have created a custom, privacy preserving Wi-Fi and BLE contact tracing system for finding the detailed paths of the 
infected individuals without any user intervention. The system tracks smartphones, but it does not require smartphone 
applications, connecting to the routers, or any other extraneous devices on the users. A custom Turtlebot3 is used for 
simulating user movement and smartphone transmission as described in Section 2. The smartphones’ received power, 
transmit power, and round trip time are collected by a custom ESP32C3 router. Even though MAC randomization 
is designed to prevent user tracking, we defeated it to track many smartphones, such as the ones listed in Table 1. 
Afterwards, the wireless parameters above are converted to signal path loss and ToF, of which the BiLSTM takes and 
predicts the absolute paths of the users. Table 3 shows the localization performance and the RMSE is always below 
0.9 m for Wi-Fi RSSI + Wi-Fi FTM. Public health authorities can use our website in Fig. 16 to find the paths of the 
confirmed cases and suspected cases, together with their MAC addresses/smartphone model specific information. They 
can also track indirect contact transmissions originating from surfaces and droplets. 
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